Performance Comparison of Six Efficient Pure Heuristics for Scheduling Meta-tasks on Heterogeneous Distributed Environments

نویسندگان

  • Hesam Izakian
  • Ajith Abraham
  • Václav Snášel
چکیده

Scheduling is one of the core steps to efficiently exploit the capabilities of heterogeneous distributed computing systems and represents an NP-complete problem. Therefore, using meta-heuristic algorithms is a suitable approach in order to cope with its difficulty. In many meta-heuristic algorithms, generating individuals in the initial step has an important effect on the convergence behavior of the algorithm and final solutions. Using some pure heuristics for generating one or more near-optimal individuals in the initial step can improve the final solutions obtained by meta-heuristic algorithms. Pure heuristics may be used solitary for generating schedules in many real-world situations in which using the meta-heuristic methods are too difficult or inappropriate. Different criteria can be used for evaluating the efficiency of scheduling algorithms, the most important of which are makespan and flowtime. In this paper, we propose an efficient pure heuristic method and then we compare the performance with five popular heuristics for minimizing makespan and flowtime in heterogeneous distributed computing systems. We investigate the effect of these pure heuristics for initializing simulated annealing meta-heuristic approach for scheduling tasks on heterogeneous environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

A new Shuffled Genetic-based Task Scheduling Algorithm in Heterogeneous Distributed Systems

Distributed systems such as Grid- and Cloud Computing provision web services to their users in all of the world. One of the most important concerns which service providers encounter is to handle total cost of ownership (TCO). The large part of TCO is related to power consumption due to inefficient resource management. Task scheduling module as a key component can has drastic impact on both user...

متن کامل

A Comparison of NSGA II and MOSA for Solving Multi-depots Time-dependent Vehicle Routing Problem with Heterogeneous Fleet

Time-dependent Vehicle Routing Problem is one of the most applicable but least-studied variants of routing and scheduling problems. In this paper, a novel mathematical formulation of time-dependent vehicle routing problems with heterogeneous fleet, hard time widows and multiple depots, is proposed. To deal with the traffic congestions, we also considered that the vehicles are not forced to come...

متن کامل

An Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm

In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010